Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.506
Filter
1.
Adv Ther ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705943

ABSTRACT

INTRODUCTION: Spinal muscular atrophy (SMA) is a severe genetic neuromuscular disease characterized by a loss of motor neurons and progressive muscle weakness. Children with untreated type 1 SMA never sit independently and require increasing levels of ventilatory support as the disease progresses. Without intervention, and lacking ventilatory support, death typically occurs before the age of 2 years. There are currently no head-to-head trials comparing available treatments in SMA. Indirect treatment comparisons are therefore needed to provide information on the relative efficacy and safety of SMA treatments for healthcare decision-making. METHODS: The long-term efficacy and safety of risdiplam versus nusinersen in children with type 1 SMA was evaluated using indirect treatment comparison methodology to adjust for differences between population baseline characteristics, to reduce any potential bias in the comparative analysis. An unanchored matching-adjusted indirect comparison was conducted using risdiplam data from 58 children in FIREFISH (NCT02913482) and published aggregate nusinersen data from 81 children obtained from the ENDEAR (NCT02193074) and SHINE (NCT02594124) clinical trials with at least 36 months of follow-up. RESULTS: Children with type 1 SMA treated with risdiplam had a 78% reduction in the rate of death, an 81% reduction in the rate of death or permanent ventilation, and a 57% reduction in the rate of serious adverse events compared with children treated with nusinersen. Children treated with risdiplam also had a 45% higher rate of achieving a Hammersmith Infant Neurological Examination, Module 2 motor milestone response and a 186% higher rate of achieving a ≥ 4-point improvement in Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders compared with children treated with nusinersen. CONCLUSION: Long-term data supported risdiplam as a superior alternative to nusinersen in children with type 1 SMA. Video abstract available for this article. Video abstract (MP4 184542 KB).


Risdiplam and nusinersen are two approved treatments for patients with type 1 spinal muscular atrophy (SMA). There are currently no head-to-head trials that compare the outcomes of these treatments in patients. This study conducted a statistical comparison of the efficacy and safety of risdiplam and nusinersen in children with type 1 SMA who received treatment for at least 36 months. Risdiplam data were collected from 58 children who participated in the FIREFISH trial (NCT02913482). Published combined data were collected from 81 children treated with nusinersen who participated in the ENDEAR (NCT02193074) and SHINE (NCT02594124) trials. Outcomes from the two studies were compared using matching-adjusted indirect comparison (MAIC) methodology. MAIC adjusts for differences in baseline characteristics between patients in two trials to make the populations more similar and reduce bias in the comparison. Results suggested that children with type 1 SMA treated with risdiplam had a 78% reduction in the rate of death and an 81% reduction in the rate of death or permanent ventilation compared with children treated with nusinersen. With risdiplam, children also had a higher rate of achieving motor function responses, and a longer time to the first serious adverse event compared with children treated with nusinersen. These results support risdiplam as a superior alternative to nusinersen in children with type 1 SMA over 36 months of follow-up. Access to long-term data beyond 36 months would allow for additional indirect comparisons between SMA treatments. These comparisons are key to guiding treatment decision-making in the absence of head-to-head trials.

2.
Blood ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701426

ABSTRACT

Rearrangements that place the oncogenes MYC, BCL2, or BCL6 adjacent to superenhancers are common in mature B-cell lymphomas. Lymphomas with diffuse large B-cell lymphoma (DLBCL) or high-grade morphology with both MYC and BCL2 rearrangements are classified as high-grade B-cell lymphoma with MYC and BCL2 rearrangements ("double hit": HGBCL-DH-BCL2) and are associated with aggressive disease and poor outcomes. Although it is established that MYC rearrangements involving immunoglobulin (IG) loci are associated with inferior outcomes relative to those involving other non-IG superenhancers, the frequency of, and mechanisms driving, IG vs non-IG MYC rearrangements have not been elucidated. Here we used custom targeted capture and/or whole genome sequencing to characterize oncogene rearrangements across 883 mature B-cell lymphomas including Burkitt lymphoma, follicular lymphoma, DLBCL, and HGBCL-DH-BCL2 tumors. We demonstrate that, while BCL2 rearrangement topology is consistent across entities, HGBCL-DH-BCL2 have distinct MYC rearrangement architecture relative to tumors with single MYC rearrangements or with both MYC and BCL6 rearrangements (HGBCL-DH-BCL6), including both a higher frequency of non-IG rearrangements and different architecture of MYC::IGH rearrangements. The distinct MYC rearrangement patterns in HGBCL-DH-BCL2 occur on the background of high levels of somatic hypermutation across MYC partner loci in HGBCL-DH-BCL2, creating more opportunity to form these rearrangements. Furthermore, because one IGH allele is already disrupted by the existing BCL2 rearrangement, the MYC rearrangement architecture in HGBCL-DH-BCL2 likely reflects selective pressure to preserve both BCL2 and B cell receptor expression. These data provide new mechanistic explanations for the distinct patterns of MYC rearrangements observed across different lymphoma entities.

3.
3D Print Addit Manuf ; 11(2): e813-e827, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38694834

ABSTRACT

Successful employment of 3D printing for delivery of therapeutic biomolecules requires protection of their bioactivity on exposure to potentially inactivating conditions. Although intermediary encapsulation of the biomolecules in polymeric particulate delivery vehicles is a promising strategy for this objective, the inclusion of such particles in 3D printing formulations may critically impact the accuracy or precision of 3D printed scaffolds relative to their intended designed architectures, as well as the degradation behavior of both the scaffolds and the included particles. The present work aimed to elucidate the effect of poly(d,l-lactic-co-glycolic acid) particle size and loading concentration on material accuracy, machine precision, and degradation of 3D printed poly(ɛ-caprolactone)-based scaffolds. Using a main effects analysis, the sizes and loading concentrations of particle delivery vehicles investigated were found to have neither a beneficial nor disadvantageous influence on the metrics of printing quality such as material accuracy and machine precision. Meanwhile, particle loading concentration was determined to influence degradation rate, whereas printing temperature affected the trends in composite weight-average molecular weight. Neither of the two particle-related parameters (concentration nor diameter) was found to exhibit a significant effect on intra-fiber nor inter-fiber porosity. These findings evidence the capacity for controlled loading of particulate delivery vehicles in 3D printed scaffolds while preserving construct accuracy and precision, and with predictable dictation of composite degradation behavior for potential controlled release of encapsulated biomolecules.

4.
J Biol Chem ; : 107300, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641066

ABSTRACT

Integrin-mediated activation of the pro-fibrotic mediator transforming growth factor-ß1 (TGF-ß1), plays a critical role in idiopathic pulmonary fibrosis (IPF) pathogenesis. Galectin-3 is believed to contribute to the pathological wound healing seen in IPF, although its mechanism of action is not precisely defined. We hypothesised that galectin-3 potentiates TGF-ß1 activation and/or signaling in the lung to promote fibrogenesis. We show that galectin-3 induces TGF-ß1 activation in human lung fibroblasts (HLFs) and specifically that extracellular galectin-3 promotes oleoyl-L-α-lysophosphatidic acid sodium salt (LPA)-induced integrin-mediated TGF-ß1 activation. Surface plasmon resonance (SPR) analysis confirmed that galectin-3 binds to αv integrins, αvß1, αvß5 and αvß6 and to the TGFßRII subunit in a glycosylation-dependent manner. This binding is heterogeneous and not a 1:1 binding stoichiometry. Binding interactions were blocked by small molecule inhibitors of galectin-3 which target the carbohydrate recognition domain. Galectin-3 binding to ß1 integrin was validated in vitro by co-immunoprecipitation in HLFs. Proximity ligation assays indicated galectin-3 and ß1 integrin colocalize closely (≤40 nm) on the cell surface, that colocalization is increased by TGF-ß1 treatment and blocked by galectin-3 inhibitors. In the absence of TGF-ß1 stimulation, colocalization was detectable only in HLFs from IPF patients suggesting the proteins are inherently more closely associated in the disease state. Galectin-3 inhibitor treatment of precision cut lung slices from IPF patients reduced Col1a1, TIMP1 and HA secretion to a similar degree as TGF-ß type I receptor inhibitor. These data suggest galectin-3 promotes TGF-ß1 signaling and may induce fibrogenesis by interacting directly with components of the TGF-ß1 signaling cascade.

5.
Calcif Tissue Int ; 114(6): 592-602, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38678512

ABSTRACT

Sarcopenia may increase non-alcoholic fatty liver disease (NAFLD) risk, but prevalence likely varies with different diagnostic criteria. This study examined the prevalence of sarcopenia and its defining components in adults with and without NAFLD and whether it varied by the method of muscle mass assessment [bioelectrical impedance (BIA) versus dual-energy X-ray absorptiometry (DXA)] and adjustment (height2 versus BMI). Adults (n = 7266) in the UK Biobank study (45-79 years) with and without NAFLD diagnosed by MRI, were included. Sarcopenia was defined by the 2018 European Working Group on Sarcopenia in Older People definition, with low appendicular skeletal muscle mass (ASM) assessed by BIA and DXA and adjusted for height2 or BMI. Overall, 21% of participants had NAFLD and the sex-specific prevalence of low muscle strength (3.6-7.2%) and sarcopenia (0.1-1.4%) did not differ by NAFLD status. However, NAFLD was associated with 74% (males) and 370% (females) higher prevalence of low ASM when adjusted for BMI but an 82% (males) to 89% (females) lower prevalence when adjusted for height2 (all P < 0.05). The prevalence of impaired physical function was 40% (males, P = 0.08) to 123% (females, P < 0.001) higher in NAFLD. In middle-aged and older adults, NAFLD was not associated with a higher prevalence of low muscle strength or sarcopenia but was associated with an increased risk of impaired physical function and low muscle mass when adjusted for BMI. These findings support the use of adiposity-based adjustments when assessing low muscle mass and the assessment of physical function in NAFLD.


Subject(s)
Absorptiometry, Photon , Non-alcoholic Fatty Liver Disease , Sarcopenia , Humans , Sarcopenia/epidemiology , Sarcopenia/diagnosis , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/physiopathology , Male , Female , Middle Aged , United Kingdom/epidemiology , Aged , Prevalence , Absorptiometry, Photon/methods , Biological Specimen Banks , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiopathology , Muscle Strength/physiology , Electric Impedance , Body Mass Index , UK Biobank
6.
BMC Musculoskelet Disord ; 25(1): 312, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649874

ABSTRACT

BACKGROUND: Hip offset, version, and length are interdependent femoral variables which determine stability and leg length. Balancing these competing variables remains a core challenge in hip arthroplasty. The potential benefits of modular femoral stems have been overshadowed by higher rates of failure. The objective of this study was to assess the survivorship of a unique dual-modular femoral stem at an average 15-year follow-up period. METHODS: The records of all patients with osteoarthritis who underwent primary total hip arthroplasty with this device between 2004-2009 were reviewed. There were no exclusions for BMI or other factors. We examined the data with Kaplan-Meier survival analysis. The primary endpoint for survival was mechanical failure of the modular neck-body junction. RESULTS: The survivorship of this device in 172 subjects was 100% with none experiencing mechanical failure of the modular junction at an average of 15 years. 60 patients died of causes unrelated to their THA and 9 patients were lost to follow-up. There were three early (≤ 12 months) dislocations (1.7%), and seven total dislocations (4.1%). 16 patients underwent reoperations during the follow-up period, none for any complication of the modular junction. Radiographic results showed well-fixed femoral stems in all cases. There were no leg length discrepancies of greater than 10 mm, and 85% were within 5 mm. CONCLUSION: There were no mechanical failures of the modular junction in any of the subjects over the average 15-year period, demonstrating that this dual-modular design is not associated with increased failure rates. We achieved a 1.7% early dislocation rate and a 4.1% total dislocation rate without any clinically significant leg length discrepancies.


Subject(s)
Arthroplasty, Replacement, Hip , Hip Prosthesis , Prosthesis Design , Prosthesis Failure , Humans , Arthroplasty, Replacement, Hip/instrumentation , Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Hip/methods , Female , Male , Middle Aged , Aged , Adult , Follow-Up Studies , Osteoarthritis, Hip/surgery , Retrospective Studies , Aged, 80 and over , Kaplan-Meier Estimate , Reoperation/statistics & numerical data , Femur/surgery , Femur/diagnostic imaging , Time Factors
8.
Nat Commun ; 15(1): 2879, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38570506

ABSTRACT

Despite regulating overlapping gene enhancers and pathways, CREBBP and KMT2D mutations recurrently co-occur in germinal center (GC) B cell-derived lymphomas, suggesting potential oncogenic cooperation. Herein, we report that combined haploinsufficiency of Crebbp and Kmt2d induces a more severe mouse lymphoma phenotype (vs either allele alone) and unexpectedly confers an immune evasive microenvironment manifesting as CD8+ T-cell exhaustion and reduced infiltration. This is linked to profound repression of immune synapse genes that mediate crosstalk with T-cells, resulting in aberrant GC B cell fate decisions. From the epigenetic perspective, we observe interaction and mutually dependent binding and function of CREBBP and KMT2D on chromatin. Their combined deficiency preferentially impairs activation of immune synapse-responsive super-enhancers, pointing to a particular dependency for both co-activators at these specialized regulatory elements. Together, our data provide an example where chromatin modifier mutations cooperatively shape and induce an immune-evasive microenvironment to facilitate lymphomagenesis.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , Animals , Mice , B-Lymphocytes/metabolism , Chromatin/genetics , Chromatin/metabolism , Germinal Center/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Mutation , Tumor Microenvironment/genetics
9.
Proc Natl Acad Sci U S A ; 121(18): e2320421121, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38662551

ABSTRACT

Here, we report recurrent focal deletions of the chr14q32.31-32 locus, including TRAF3, a negative regulator of NF-κB signaling, in de novo diffuse large B cell lymphoma (DLBCL) (24/324 cases). Integrative analysis revealed an association between TRAF3 copy number loss with accumulation of NIK, the central noncanonical (NC) NF-κB kinase, and increased NC NF-κB pathway activity. Accordingly, TRAF3 genetic ablation in isogenic DLBCL model systems caused upregulation of NIK and enhanced NC NF-κB downstream signaling. Knockdown or pharmacological inhibition of NIK in TRAF3-deficient cells differentially impaired their proliferation and survival, suggesting an acquired onco-addiction to NC NF-κB. TRAF3 ablation also led to exacerbated secretion of the immunosuppressive cytokine IL-10. Coculturing of TRAF3-deficient DLBCL cells with CD8+ T cells impaired the induction of Granzyme B and interferon (IFN) γ, which were restored following neutralization of IL-10. Our findings corroborate a direct relationship between TRAF3 genetic alterations and NC NF-κB activation, and highlight NIK as a potential therapeutic target in a defined subset of DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Signal Transduction , TNF Receptor-Associated Factor 3 , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 3/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/metabolism , Humans , NF-kappa B/metabolism , NF-kappaB-Inducing Kinase , Cell Line, Tumor , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Cell Proliferation
11.
J Card Fail ; 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38522637

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is highly prevalent and associated with worse cardiovascular outcomes. The pathophysiology of HFpEF mostly relies on the development of elevated left ventricle filling pressure, diastolic dysfunction, and atrial dilatation and impairment. This dynamic process may eventually lead to the development of functional mitral regurgitation (MR), characterized by mitral annular dilatation and consequent leaflet remodeling, in the context of preserved left ventricular ejection fraction. These observations highlight the possible common pathophysiology of MR and HFpEF. However, less is known about the prevalence and the clinical value of MR in the context of HFpEF. This review aims to provide an overview of the association and interplay between functional MR and HFpEF, discuss the underlying mechanisms that are common to these diseases, and summarize potential targeted pharmacological treatments.

12.
BMC Womens Health ; 24(1): 179, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491366

ABSTRACT

BACKGROUND: Residual disease following cytoreductive surgery in patients with ovarian cancer has been associated with poorer survival outcomes compared with no residual disease. We performed a meta-analysis to assess the impact of varying levels of residual disease status on survival outcomes in patients with ovarian cancer who have undergone primary cytoreductive surgery or interval cytoreductive surgery in the setting of new therapies for this disease. METHODS: Medline, Embase, and Cochrane databases (January 2011 - July 2020) and grey literature, bibliographic and key conference proceedings, were searched for eligible studies. Fixed and random-effects meta-analyses compared progression and survival by residual disease level across studies. Heterogeneity between comparisons was explored via type of surgery, disease stage, and type of adjuvant chemotherapy. RESULTS: Of 2832 database and 16 supplementary search articles screened, 50 studies were selected; most were observational studies. The meta-analysis showed that median progression-free survival and overall survival decreased progressively with increasing residual disease (residual disease categories of 0 cm, > 0-1 cm and > 1 cm). Compared with no residual disease, hazard ratios (HR) for disease progression increased with increasing residual disease category (1.75 [95% confidence interval: 1.42, 2.16] for residual disease > 0-1 cm and 2.14 [1.34, 3.39] for residual disease > 1 cm), and also for reduced survival (HR versus no residual disease, 1.75 [ 1.62, 1.90] for residual disease > 0-1 cm and 2.32 [1.97, 2.72] for residual disease > 1 cm). All comparisons were significant (p < 0.05). Subgroup analyses showed an association between residual disease and disease progression/reduced survival irrespective of type of surgery, disease stage, or type of adjuvant chemotherapy. CONCLUSIONS: This meta-analysis provided an update on the impact of residual disease following primary or interval cytoreductive surgery, and demonstrated that residual disease was still highly predictive of progression-free survival and overall survival in adults with ovarian cancer despite changes in ovarian cancer therapy over the last decade. Higher numerical categories of residual disease were associated with reduced survival than lower categories.


Subject(s)
Cytoreduction Surgical Procedures , Ovarian Neoplasms , Adult , Humans , Female , Ovarian Neoplasms/surgery , Ovarian Neoplasms/drug therapy , Proportional Hazards Models , Neoplasm, Residual , Disease Progression
13.
Cancers (Basel) ; 16(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539425

ABSTRACT

OBJECTIVES: Accurate outcome prediction is important for making informed clinical decisions in cancer treatment. In this study, we assessed the feasibility of using changes in radiomic features over time (Delta radiomics: absolute and relative) following chemotherapy, to predict relapse/progression and time to progression (TTP) of primary mediastinal large B-cell lymphoma (PMBCL) patients. MATERIAL AND METHODS: Given the lack of standard staging PET scans until 2011, only 31 out of 103 PMBCL patients in our retrospective study had both pre-treatment and end-of-treatment (EoT) scans. Consequently, our radiomics analysis focused on these 31 patients who underwent [18F]FDG PET-CT scans before and after R-CHOP chemotherapy. Expert manual lesion segmentation was conducted on their scans for delta radiomics analysis, along with an additional 19 EoT scans, totaling 50 segmented scans for single time point analysis. Radiomics features (on PET and CT), along with maximum and mean standardized uptake values (SUVmax and SUVmean), total metabolic tumor volume (TMTV), tumor dissemination (Dmax), total lesion glycolysis (TLG), and the area under the curve of cumulative standardized uptake value-volume histogram (AUC-CSH) were calculated. We additionally applied longitudinal analysis using radial mean intensity (RIM) changes. For prediction of relapse/progression, we utilized the individual coefficient approximation for risk estimation (ICARE) and machine learning (ML) techniques (K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Random Forest (RF)) including sequential feature selection (SFS) following correlation analysis for feature selection. For TTP, ICARE and CoxNet approaches were utilized. In all models, we used nested cross-validation (CV) (with 10 outer folds and 5 repetitions, along with 5 inner folds and 20 repetitions) after balancing the dataset using Synthetic Minority Oversampling TEchnique (SMOTE). RESULTS: To predict relapse/progression using Delta radiomics between the baseline (staging) and EoT scans, the best performances in terms of accuracy and F1 score (F1 score is the harmonic mean of precision and recall, where precision is the ratio of true positives to the sum of true positives and false positives, and recall is the ratio of true positives to the sum of true positives and false negatives) were achieved with ICARE (accuracy = 0.81 ± 0.15, F1 = 0.77 ± 0.18), RF (accuracy = 0.89 ± 0.04, F1 = 0.87 ± 0.04), and LDA (accuracy = 0.89 ± 0.03, F1 = 0.89 ± 0.03), that are higher compared to the predictive power achieved by using only EoT radiomics features. For the second category of our analysis, TTP prediction, the best performer was CoxNet (LASSO feature selection) with c-index = 0.67 ± 0.06 when using baseline + Delta features (inclusion of both baseline and Delta features). The TTP results via Delta radiomics were comparable to the use of radiomics features extracted from EoT scans for TTP analysis (c-index = 0.68 ± 0.09) using CoxNet (with SFS). The performance of Deauville Score (DS) for TTP was c-index = 0.66 ± 0.09 for n = 50 and 0.67 ± 03 for n = 31 cases when using EoT scans with no significant differences compared to the radiomics signature from either EoT scans or baseline + Delta features (p-value> 0.05). CONCLUSION: This work demonstrates the potential of Delta radiomics and the importance of using EoT scans to predict progression and TTP from PMBCL [18F]FDG PET-CT scans.

14.
Cancer Res ; 84(6): 872-886, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38486486

ABSTRACT

Medulloblastoma is one of the most common malignant brain tumors of children, and 30% of medulloblastomas are driven by gain-of-function genetic lesions in the Sonic Hedgehog (SHH) signaling pathway. EYA1, a haloacid dehalogenase phosphatase and transcription factor, is critical for tumorigenesis and proliferation of SHH medulloblastoma (SHH-MB). Benzarone and benzbromarone have been identified as allosteric inhibitors of EYA proteins. Using benzarone as a point of departure, we developed a panel of 35 derivatives and tested them in SHH-MB. Among these compounds, DS-1-38 functioned as an EYA antagonist and opposed SHH signaling. DS-1-38 inhibited SHH-MB growth in vitro and in vivo, showed excellent brain penetrance, and increased the lifespan of genetically engineered mice predisposed to fatal SHH-MB. These data suggest that EYA inhibitors represent promising therapies for pediatric SHH-MB. SIGNIFICANCE: Development of a benzarone derivative that inhibits EYA1 and impedes the growth of SHH medulloblastoma provides an avenue for improving treatment of this malignant pediatric brain cancer.


Subject(s)
Benzbromarone/analogs & derivatives , Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , Animals , Mice , Humans , Child , Hedgehog Proteins , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Cerebellar Neoplasms/drug therapy
15.
bioRxiv ; 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38464328

ABSTRACT

Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.

16.
Orthopedics ; : 1-6, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38466825

ABSTRACT

BACKGROUND: The continuation of long-term warfarin therapy is gaining acceptance in minor surgeries but maintaining therapeutic international normalized ratio (INR) values among patients during major orthopedic procedures raises concern. While bridging therapy with low-molecular-weight heparin is currently recommended for patients receiving anticoagulation, few studies have evaluated the safety of continuing warfarin during total joint arthroplasty. This study evaluated the safety and efficacy of continuous warfarin anticoagulation through total joint arthroplasty with and without prophylactic tranexamic acid (TXA). MATERIALS AND METHODS: We conducted a retrospective, matched-pair analysis of two experimental groups of patients who underwent primary total hip arthroplasty or total knee arthroplasty performed by a single surgeon. Our first experimental group, warfarin plus TXA (warfarin+TXA), consisted of 21 patients who underwent arthroplasty while receiving therapeutic anticoagulation with warfarin (INR, 2.0-3.0) and who received prophylactic TXA. Our second experimental group, warfarin without TXA (warfarin-TXA), consisted of 40 patients who underwent arthroplasty while receiving therapeutic anticoagulation with warfarin (INR, 2.0-3.0) without prophylactic TXA. RESULTS: The percent change in hemoglobin value after surgery, red blood cells transfused, surgical site infections, bleeding complications, and thrombotic complications were similar between both experimental and control groups. When comparing the historical group with the warfarin+TXA group, the addition of TXA resulted in a statistical decrease in mean red blood cells transfused and estimated blood loss, with no statistically significant increase in complications. CONCLUSION: Many factors must be considered when choosing perioperative thromboembolic prophylaxis for arthroplasty candidates with medical comorbidities requiring long-term anticoagulation. This study presents data indicating that it could be safe and effective to continue therapeutic warfarin while using prophylactic TXA. [Orthopedics. 202x;4x(x):xx-xx.].

17.
Cancer Discov ; 14(4): 559-562, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38446429

ABSTRACT

SUMMARY: Cancer Grand Challenges is an international funding initiative that aims to unite the world's best scientists to tackle some of cancer's toughest problems by funding team science on a global scale. Here, we discuss the five newly funded teams and the challenges they will address over the coming years.


Subject(s)
Financing, Organized , Neoplasms , Humans , Neoplasms/therapy
18.
Cancer Cell ; 42(4): 583-604.e11, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458187

ABSTRACT

ARID1A, a subunit of the canonical BAF nucleosome remodeling complex, is commonly mutated in lymphomas. We show that ARID1A orchestrates B cell fate during the germinal center (GC) response, facilitating cooperative and sequential binding of PU.1 and NF-kB at crucial genes for cytokine and CD40 signaling. The absence of ARID1A tilts GC cell fate toward immature IgM+CD80-PD-L2- memory B cells, known for their potential to re-enter new GCs. When combined with BCL2 oncogene, ARID1A haploinsufficiency hastens the progression of aggressive follicular lymphomas (FLs) in mice. Patients with FL with ARID1A-inactivating mutations preferentially display an immature memory B cell-like state with increased transformation risk to aggressive disease. These observations offer mechanistic understanding into the emergence of both indolent and aggressive ARID1A-mutant lymphomas through the formation of immature memory-like clonal precursors. Lastly, we demonstrate that ARID1A mutation induces synthetic lethality to SMARCA2/4 inhibition, paving the way for potential precision therapy for high-risk patients.


Subject(s)
Lymphoma , Memory B Cells , Animals , Humans , Mice , DNA-Binding Proteins/genetics , Lymphoma/genetics , Mutation , Nuclear Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Neurology ; 102(5): e209137, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38315945

ABSTRACT

BACKGROUND AND OBJECTIVES: Sensitive, reliable, and scalable biomarkers are needed to accelerate the development of therapies for Parkinson disease (PD). In this study, we evaluate the biomarkers of early PD diagnosis, disease progression, and treatment effect collected in the SPARK. METHODS: Cinpanemab is a human-derived monoclonal antibody binding preferentially to aggregated forms of extracellular α-synuclein. SPARK was a randomized, double-blind, placebo-controlled, phase 2 multicenter trial evaluating 3 cinpanemab doses administered intravenously every 4 weeks for 52 weeks with an active treatment dose-blind extension period for up to 112 weeks. SPARK enrolled 357 participants diagnosed with PD within 3 years, aged 40-80 years, ≤2.5 on the modified Hoehn and Yahr scale, and with evidence of striatal dopaminergic deficit. The primary outcome was change from baseline in the Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale total score. Secondary and exploratory biomarker outcomes evaluated change from baseline at week 52 relative to placebo. Dopamine transporter SPECT and MRI were used to quantify changes in the nigrostriatal dopamine pathway and regional atrophy. CSF and plasma samples were used to assess change in total α-synuclein levels, α-synuclein seeding, and neurofilament light chain levels. SPARK was conducted from January 2018 to April 2021 and terminated due to lack of efficacy. RESULTS: Approximately 3.8% (15/398) of SPECT-imaged participants did not have evidence of dopaminergic deficit and were screen-failed. Binary classification of α-synuclein seeding designated 93% (110/118) of the enrolled CSF subgroup as positive for α-synuclein seeds at baseline. Clinical disease progression was observed, with no statistically significant difference in cinpanemab groups compared with that in placebo. Ninety-nine percent of participants with positive α-synuclein seeding remained positive through week 52. No statistically significant changes from baseline were observed between treatment groups and placebo across biomarker measures. Broadly, there was minimal annual change with high interindividual variability across biomarkers-with striatal binding ratios of the ipsilateral putamen showing the greatest mean change/SD over time. DISCUSSION: Biomarker results indicated enrollment of the intended population with early PD, but there was no significant correlation with disease progression or clear evidence of a cinpanemab treatment effect on biomarker measures. Suitable biomarkers for evaluating disease severity and progression in early PD trials are still needed. TRIAL REGISTRATION INFORMATION: NCT03318523 (clinicaltrials.gov/ct2/show/NCT03318523); Submitted October 24, 2017; First patient enrolled January 2018.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnostic imaging , Parkinson Disease/drug therapy , alpha-Synuclein , Antiparkinson Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use , Dopamine/metabolism , Biomarkers , Disease Progression , Double-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL
...